cúpula
geodésica: Cúpula formada por una estructura de acero cuyos nervios,
que siguen las líneas de tres conjuntos principales de círculos máximos que se
Las caras de una cúpula geodésica pueden ser triángulos, hexágonos o cualquier otro polígono. Los vértices deben coincidir todos con la superficie de una esfera o un elipsoide (si los vértices no quedan en la superficie, la cúpula ya no es geodésica). El número de veces que las aristas del icosaedro o dodecaedro son subdivididas dando lugar a triángulos más pequeños se llama la frecuencia de la esfera o cúpula geodésica. Para la esfera geodésica se cumple el teorema de poliedros de Euler, que indica que:

Para construir esferas geodésicas se utilizan las fórmulas de los radios del dodecaedro o icosaedro. Los radios permiten levantar los nuevos vértices de las subdivisiones a la superficie de la esfera que pasará por los vértices originales del cuerpo.
Las caras de una cúpula geodésica pueden ser triángulos, hexágonos o cualquier otro polígono. Los vértices deben coincidir todos con la superficie de una esfera o un elipsoide (si los vértices no quedan en la superficie, la cúpula ya no es geodésica). El número de veces que las aristas del icosaedro o dodecaedro son subdivididas dando lugar a triángulos más pequeños se llama la frecuencia de la esfera o cúpula geodésica. Para la esfera geodésica se cumple el teorema de poliedros de Euler, que indica que:
Donde C es el número de caras (o número de triángulos), V el número de vértices (o uniones múltiples) y A el número de aristas (o barras usadas). Para una cúpula parcial que no sea una esfera completa se cumple: {{ecuación|

Para construir esferas geodésicas se utilizan las fórmulas de los radios del dodecaedro o icosaedro. Los radios permiten levantar los nuevos vértices de las subdivisiones a la superficie de la esfera que pasará por los vértices originales del cuerpo.
No hay comentarios:
Publicar un comentario